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Abstract

Since the early 1990s the Aeroflightdynamics Direciorate at the Ames Research Center
Las been conducting tests on isolated hingeless rotors in hover and forward flight. The
primary objective is to generate a database on aeroelastic stability in trimmed flight for
torsionally soft rotors at realistic tip speeds. The rotor test model has four soft inplane blades
of NACA 0012 airfoil section with low torsional stiffness. The collective pitch and shaft tilt
are set prior to each test run. and then the rotor is trimmed in the following sense: the
longitudinal and lateral cyclic pitch controls are adjusted through a swashplate to minimize
the 1/rev flapping moment at the 12% radial station. In hover. the database comprises
lag regressive-mode damping with collective pitch variations: -3% < g, < 8 In forward
flight the database comprises cyclic pitch controls, root flap moment and lag regressive-
mode damping with advance ratio, shaft angle and collective pitch variations: 0 < p < 0.36,
0° < o, <6° and 0° < §y < 5.9°. This report presents the predictions and their correlation
with the database. A modal analysis is used. in which nonrotating modes in flap bending, lag
bending and torsion are computed from the measured blade mass and stiffness distributions.
The airfoil aerodvnamics is represented by the ONERA dynamic stall models of lift, drag and
pitching moment, and the wake dynariics is represented by a state-space wake model. The
trim analysis of finding the cyclic controls and the corresponding periodic responses is based
on periodic shooting with damped Newton iteration; the Floquet transition matrix (FTM)
comes out as a byproduct. The stability analysis of finding the frequencies and damping
levels is based on the eigenvalue-eigenvector analysis of the FTM. All the structural and
aerodynamic states are included from modeling to trim analysis to stability analysis. A
major finding is that dynamic wake dramatically improves the correlation for the lateral

cyclic pitch control. Overall, the correlation is fairly good.

Nomenclature

Unless otherwise stated, the symbols below are dimensionless:
a linear lift curve slope

4. O damping factors in dynamic stall drag and pitching moment models
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airfoil semi-chord, (1/R)

airfoil chord, (m, 1/R)

airfoil drag coefficient and constant profile-drag coefficient
quasisteady drag coeflicient

airfoil lift and pitching moment coefficients

airfoil pitching moment coefficient at zero angle of attack
quasisteady pitching moment coeflicient

thrust coefficient

thrust level

extrapolated linear-lift coefficient

quasisteady lift coefficient

dynamic-stall-lift damping parameter

phase shift parameter in dynamic stall lift model

radial station for flapping moment estimation, (1/R, m)
hinge offset, (1/R, m)

phase shift parameters in dynamic stall drag and

pitching moment models

Galerkin-type integrals, Eq. (20)

unit vectors associated with inertial frame

unit vectors associated with undeformed blade coordinate system
mass radii of gyration of blade cross section about its principle axes
blade span, 1 — e, (1/R, m)

sectional aerodynamic forces

total horizontal and vertical forces, (V)

mass per unit length, (kg/m)

reference mass per unit length, (kg/m)

aerodynamic pitching moment

total pitching moment, (Nm)

total flap moment at ey, (1/pbQ2R?)

n-th harmonic cosine component of M
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n-th harmonic sine component of M

steady component of M

root cutout, (1/R)

frequency parameters in dynamic stall drag and

pitching moment models

radial station of the :-th blade, (1/R)

rotor radius, (m)

time, (1/Q)

inplane (lag) bending deflection

dimensional inplane (lag) bending deflection

generalized coordinate of i-th mode for lag degree of freedom
dynamic stall lift frequency parameter; also out of plane
(flap) bending deflection, (1/R)

dimensional out of plane (flap) bending deflection
generalized coordinate of i-th mode for flap degree of freedom
inertial coordinate system

undeformed coordinate system

radial distance measured from the rotor center, (1/R, m)
blade airfoil angle of attack

shaft angle, (deg,rad)

quasisteady stall angle, (deg)

blade precone, (deg)

Lock number (blade inertia parameter)

pitch-rate coefficient

blade pitch angle

collective pitch angle, (deg, rad)

lateral and longitudinal cyclic pitch angles, (deg,rad)
time-delay parameter

flap bending stiffness, (1/m,Q*R*)

advance ratio



o rotor solidity

Y azimuthal location of the :-th blade
v, i-th flap mode

s blade mass density (kg/m?)

Poo air density (kg/m?>)

rotor angular speed, (rad/sec)

Q

()4 aerodynamic component of ( )

() inertial component of ( )

() time derivative of ( )

() spatial derivative of ( )

A7 approximately equal to

NEL number of aerodynamic elements

NOM number of modes each in flap bending, lag bending and torsion
rpm revolutions per minute

1 Introduction

In the early eighties, McNulty experimentally investigated the stability of isolated hin-
geless rotors in forward flight under untrimmed conditions [L]. The strengths of the ex-
periment were structural simplicity and aerodynamically demanding conditions. In fact, the
hub-flexure-blade assembly was intentionally designed to approximate closely root-restrained
rigid flap-lag blades, and the database included dynamically stalled conditions with advance
ratio as high as 0.55 and shaft angle as high as 20°. Many investigations right until to-
day have been driven by the database in Ref. [1], and these strengths helped isolate the
aerodynamic aspects of the stability problem in forward flight (Refs. 2—8), particularly the
nonlinear dynamic stall aspects. However, the weaknesses of the experiment were low tip
speed and the lack of a swash plate. For example, the collective pitch and shaft angle were
the only control inputs, which were manually set prior to each run. This resulted in the

unusual flight conditions of unrestricted tip path planes with very large negative coning an-



gles. To remove these weaknesses Maier et al. have been conducting experiments since the
early 90s on isolated hingeless rotors with torsionally soft blades [9). Moreover, they also
recognize the increasing need for a database on torsionally soft blades in forward flight [9].
Thus, stated explicitly, the primary objective of their tests was to generate trim and aeroe-
lastic stability data for torsionally soft rotors operating at realistic rotational speeds. The
rotor is operated under trimmed conditions of minimized 1/rev root flap moment (details to
follow). Thus, the database of Ref. [9] includes test results on lag-regressive mode damping,
longitudinal and lateral cyclic pitch controls and steady root flap moment.

With this background, we now spell out the objectives of this report:

1. Develop an elastic flap-lag-torsion analysis for required trim conditions of minimized

1/rev root flap moment.

2. Predict trim results of longitudinal and lateral cyclic pitch controls, and steady root

flap moment as well as stability results of modal frequencies and lag damping levels.

3. Correlate these predictions with the database of Refs. [9] and [10] and thereby isolate
the effects of quasisteady stall, dynamic stall and dynamic wake on trim and stability

results.

2 Experimental Rotor

To facilitate discussion and presentation of results, we briefly describe the experi-
mental rotor of Maier et al. [9]. It is a soft-inplane hingeless rotor with torsionally soft
blades. The 7.5-ft rotor has four blades of an NACA 0012 airfoil section. The blade chord
is 3.4-in and has a rectangular plan form as shown in Fig. 1. Furthermore, the blades have
two-degree precone, and zero-degree pretwist and droop. The rotor also has a provision to
vary the blade precone. The blade mass-center, tensile, aerodynamic and elastic axes are
nearly coincident with the control axis, which is at the quarter-chord point. Table 1 summa-
rizes the rotor properties of the experimental model. The test-model blade including other
details of the hub attachment are given in Figs. 1 and 2. Basically, the blade comprises four

distinct regions. The first region is a hub section with very high stiffness values. The second
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Figure 1: Hub-Flexure-Blade Assembly

region is a root-flexure section, which accommodates the blade flap and lead-lag motions.
The third region is a short transition section, which is relatively stiff and provides transition
from the blade root-flexure to the airfoil section. The fourth section is the NACA 0012
blade portion. Table 2 details the stiffness and mass distributions in each of these sections.
The model is designed so that the test data correspond to stability of isolated rotors. The
separation between the lag-regressive mode frequency and the lowest test-stand frequency is
7.1Hz, which is far above the lag regressive-mode frequency.

The collective pitch angle (#y) and shaft tilt angle (c;) are set prior to each run and
are known parameters. The rotor is operated trimmed with lateral and longitudinal cyclic
pitch controls. The cyclic pitch controls are exercised through a conventional swash plate
mechanism that controls pitch on the blade root cuff at a location inboard of the flap-lag
flexure motions (Fig. 1). According to Ref. [9], such an arrangement minimizes root-end-
kinematic coupling effects and thus avoids any contamination of the aeroelastic stability data
with kinematic nonlinearities. The rotor is operated at 1700 rpm, which in hover gives a
Reynolds number of 1.2 x 10% and Mach number of 0.6 at the blade tip.

In hover tests, the rotor is set at the desired speed and collective pitch angle. The
shaft angle is set to zero degrees. Then, low-amplitude cyclic excitation is applied and

the frequency of the excitation is adjusted until the lag response of the first blade reaches



Table 1: Details of the Experimental Rotor

Number of blades

Airfoil section

Hover blade-tip Mach number at 1700 rpm
Hover blade-tip Reynolds number at 1700 rpm
Rotor radius, ft

Blade chord, in

Nonrotating fundamental flap frequency, Hz
Nonrotating fundamental lead-lag frequency, Hz
Nonrotating fundamental torsion frequency, Hz
Blade precone, deg

Blade pretwist, deg

Blade droop, deg

Blade sweep, deg

4

NACA 0012
0.6
1.2x10°
3.75

3.4

4.499
14.405
64.362

0.0 and 2.0
0.0

0.0

0.0
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Figure 2: Schematic of Hub-Flexure-Blade Assembly

a maximum. To obtain a strong decaying transient signal, the magnitude of the cyclic
excitation is adjusted till the maximum allowable lag response is reached; the maximum
allowable is based on the blade structural limit. The excitation is stopped and the ensuing
transient signal is recorded for 2 seconds.

In forward-flight tests, the shaft angle is set first and the rotor speed is brought up to the
desired value. Then, the collective pitch is set, wind tunnel air speed is increased slowly to
the desired forward-flight speed and the cyclic pitch controls are adjusted to maintain low-
oscillatory flapping loads. When the desired forward-flight speed is reached, the collective
pitch is readjusted to get the desired value and the cyclic pitch controls are further adjusted
to minimize the 1/rev flapping moment at the 12% radial station. Then, low-amplitude
cyclic excitation is applied. The frequency and magnitude of the excitation are adjusted
so that the maximum lead-lag response (but below the structural limit) is attained. The
excitation is shut off and the ensuing transient is recorded for 2 seconds. The recorded
signals are analyzed using the moving-block analysis technique to obtain modal damping
and frequency. Reference [9] provides additional details on the model rotor design and test

procedures.
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3 Analysis

3.1 Elastic Flap-Lag-Torsion Equations

The flap-lag-torsion equations of motion are nonlinear partial differential equations,
which are given in Ref. [6]. We use a Galerkin-type scheme to transform these partial
differential equations into a set of ordinary differential equations in terms of generalized co-
ordinates. Orthogonal, nonrotating normal modes are used, which are developed numerically
with mass and stiffness distributions identical to those of the experimental rotor; see Table
9. In-vacuo conditions are assumed; that is, without aerodynamics and the frequencies are
obtained from an eigenanalysis. A Mykelstad-type approach is followed in generating the
modes. As shown in Table 2, the stiffness distributions for the transition region (region 3)
are not given because these distributions change continuously over this region and it was not
possible to measure them [9]. In the present correlation work, we assume a linear variation
for stiffness properties in that region while computing the mode shapes. Figures 3—5 show
the nonrotating mode shapes for the first five flap bending, lag bending and torsion deflection
modes. These modes are normalized with a tip deflection of one. The corresponding five
nonrotating frequencies are tabulated in Table 3. Using these normal modes, the equations of
motion are transformed into a set of modal equations in terms of the generalized coordinates.
The Galerkin-type integrals associated with this transformation for spatial dependency are

evaluated numerically and are given in Ref. [6].

3.2 Aerodynamics

The airfoil aerodynamics is based on the quasisteady stall, dynamic stall and dynamic
stall and wake theories, which are described in Ref. [6]. As in the experimental rotor,
the analytical model has four blades of an NACA 0012 airfoil section. The airfoil-section
quasisteady stall characteristics are determined following Ref. [11] at a Reynolds number
of 1.8x10%. For the lift model, the quasisteady lift coefficient C,, and extrapolated lift

coefficient C,, are given by
C, = asinacosa 0° < o < 180° (1a)
C..,=C, 0°<a<ad, (1b)

12
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C,, = asin o, oS ag, ags <a<45° (1c)
C,, = asin ag, COS O SIN 200 45° < @ < 135° (1d)
C,, = —asin o, COS Orgs 135° < @ < 166° (le)
C,, =C., 166° <a <180° (1f)

where @ = 6.28 and a,s = 14°. Figure 6 shows the quasisteady lift coefficient for 0° < o <
360°. It also includes a comparison with the static test data from Ref. [11] and with the
extrapolated linear-lift coefficient C,, according to Eq. (1a).

For the drag model, the quasisteady drag coefficient C4, and the constant drag coefficient

C4, are:
Cy, = 0.01 (2a)
Cy, = 1.05 — (1.05 — Cyy ) cos2a 0% < o < 360° (2b)

The variations of these coefficients for 0° < a < 360° are shown in Fig. 7, which also
includes test data from Ref. [11].

For the pitching moment model, the quasisteady moment coefficient Crn, is given by

Cm, =Cmy 0°<a<al (3a)
Crm, = Cmy — 0.058225Ttan" (@ — ays) 0y < a < 20° (3b)
Cm. = Crmy — 0.55sin(a — 20°) — 0.0842201 cos(@ — 20°)  20° < @ < 101.2941° (3¢)
C. = Crmy — 0.55641 cos[0.75(c — 101.2941%)]  101.2941° < & < 170° (3d)
Cr, = 0.3461497[0.1(a — 170°)]  170° < o < 180° (3e)

where C,, = 0.0. Figure 8 shows the variation of Cy,, from Egs. (3a)—(3e) and the test
data from Ref. [11].

The dynamic stall parameters used in the ONERA stall model are the same as those
for an NACA 23012 airfoil section; these are given in the Appendix; for additional details,
see Ref. [6]. To include wake effects, we use the finite-state three-dimensional wake model,
which is based on six harmonics and three radial shape functions for each harmonic; this
leads to 39 wake states. Although a detailed convergence study with respect to the number
of harmonics and radial shape functions has not been carried out in forward flight, the wake

model should provide results close to the converged values for Cr/o, < 0.05.

17
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3.3 Trim Analysis

As detailed earlier, the collective pitch and shaft tilt angles are known control inputs.
Therefore, trim analysis per se refers to finding the lateral and longitudinal cyclic control
inputs for minimized 1/rev flap moment at the 12% radial station and to finding the cor-
responding initial conditions for the periodic responses. The trim analysis is based on the
shooting method with damped Newton Iteration, which generates the FTM as a byproduct.
The modal damping levels and frequencies are obtained from the eigenvalues and eigenvec-
tors of the FTM [12]. This analysis still requires two additional trim equations that satisfy
the required trim conditions of minimized 1/rev flap moment at 0.12R. These trim equations

are given in the next section.

3.3.1 Flap Moment Equations

Consider a generic material point on the blade at a radial location T from the hinge
offset. As shown in Fig. 9, the generic point is subjected to inertial, aerodynamic and
centrifugal forces. It is expedient to express the components of each of these forces in the
undeformed blade coordinate system zyz Let £, and L, represent the total horizontal
and vertical forces parallel and perpendicular to the undeformed z-coordinate, respectively.
Similarly, let M, represent the total moment acting parallel to the undeformed y-coordinate
and let €; represent the 0.12R radial location about which the flap moment is computed.
Following Ref. [13], we predict the flap moment by the force-integration approach, in which
the sectional forces and moments are integrated over the blade span to obtain the total

moment. Therefore, the total flap moment is given by
MEt) = [ AL [BE) - B(E) - Lu(® —2)) + M.} dF (4)

Now, we express the forces and moment in Eq. (4) as a sum of inertial and aerodynamic

components. The inertial component includes contribution from the centrifugal forces as

well. Thus we have

Lo=LLa L2 L,=L0+L8 My=M+M] (5)

21



where the superscripts / and A indicate that the contributions are of inertial and aerody-

namic origin. Substituting Eq. (5) in Eq. (4), we get

M(E;,t) = /l (£l [w(z) - w(e))] - LL(7 — &) + ML} dT

= J’\A (_éf)inertial + M (Ef)aerodynarnic (6)

The expressions for sectional inertial forces, £! and Ll can be derived by applying

Newton’s second law:
! =£5i+£5j+£{uk=//psadnd§ (M)

Substituting for the blade acceleration relative to an inertial frame and performing the cross-

sectional integrals, we get [6]
£l = 7 [~200 — (T + &) + 5,007 (8)

In deriving the above equations, we neglect the axial deformation.

Similarly, the sectional inertial moments can be derived from
MI:M51+M§J'+M;1<:—/ 0,8 X adn dt (10)

where s represents the moment arm (see Ref. [6]). Sustituting for s and a and performing

the cross-sectional integrals, we get

ML = —m [—'6’ + QZT)"] {(%3@ - Efnl)sinﬁ cos 0}

v

— =i 4 200 + Q¥ + Q28] {Fn, sin? 0+ F,,, cos? 60} (11)

Substituting Eqs. (8), (9) and (11) for the inertial part in Eq. (6) and after nondimension-

alization, we get

Minertial

R 6a rt )
m '/M(efa I/))inertial = 7 -/61{277’1 v [w(x) — w(ef)]

22
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+ m(z + ex) [w(z) — wley)]

— Bpemwlw(z) — wleg)] + mi(z —ef) + 28,cm v(z — )

+  Bpen(z — es)(z + en) + mk2,_ V'sinf cos§ — mkZ, v'sin 6 cos 6
+ mk? 0'sin® 6 — mkL,w'sin® § — 20'mk?,_sin’ 0

— mk2,_ Bpesin® 0} dz (12)

Now, substitution of modal expansions for w and v in Eq. (12) gives

L 6a NOM NOM .
Mles Vineriat = Y Y [2FMLVW; - B, F MEW, W]
i=1 =1
NOM . .
+ S [FMW; + FMIW; +28,.F M}V]
i=1
NOM )
+ Z FJWI»G sin @ cos 8V, — FM{6 sin f cos 01/}]
=1
NoM .
+ S [FM]sin?0W; — FM] sin® W)

t=

+ BuFM® — (20 + B,.)sin? 0F M®) (13)

The aerodynamic contribution to flap moment is obtained from sectional aerodynamic
forces and moments, which are calculated at the mid point of each aerodynamic element.
Hence, we use a force-summation scheme instead of integrating the forces and moments along
the length of the blade. Thus, in terms of sectional aerodynamic forces and moments, the
flap moment due to aerodynamics can be obtained as

M (Ef, w )aerodyna.m.ic
po b2 R

M( €f, (/) )aerodynamic

NEL
= Y [Lduw(zs) —wlen)} - Lhzs+ M| Az, (14)
n=1
[n the above equation, zy, and Az, represent the radial distance of the mid point from the

0.12R radial station and the length of the n-th aerodynamic element, respectively. Expressing

Eq. (14) in terms of sectional aerodynamic forces and moments, we get

LA =— (WL, +w'l,) (15)

24



Li=1, (16)

iM‘j = UIMQS (17)

where L,, L, and M, are the sectional aerodynamic forces and moments described in Ref.

[6]. Substitution of Eqs. (15)—(17) into Eq. (14) gives

NEL
M(é’f, ¢)aerodynamic = Z [_ (U,Lv + w,Lw) [w(xf) - w(ef)]
n=1
— Lw.’L‘f + U,M,ﬁ]nAIn (18)

Substituting modal expansions, we rewrite the above equation as

NOM NOM
Z Z[ FMPV:W;L,, — FMYW.W,L,,]

ﬁb’]m

M(efa"/))aerodynamic =
NOM

+ Z FMinV;Mct,n — Lwna:fn} (19)
1=1

Similarly, with the substitution of Eqs. (13) and (19) in Eq. (6), the total flap moment at

the radial location ey is given by

L NOM NOM
Mles) = —{Z S [eFMiviW; - — BpeF MEW W]
i=1 =1
NOM
+ Z [FMPW; + F MW, + 28,.F M{ Vi)
oM
+ Z [FMﬁschosHV FJW smﬂcosHV]
Now

+ 3 [FM]sin?0W, — FM] sin® W)
1=1
+ B FM® — (20 4 B,.)sin* §F M°)
NEL NOMNOM
+ Z{ S Y [FFMPViW,L,, — FMJWW, L,
n=1 =1 j=1
NOM
+ Y FMPViMy, — Lo, 25} (20)

1=1

The Galerkin-type integrals accounting for spatial contributions are detailed in Ref. [6].
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3.3.2 Trim Equations

Equation (20) gives the total flap moment acting at the radial station ey; that is, at the
12% radial station. To obtain the 1/rev components of flap moment, we expand Eq. (20) in

terms of Fourier series as

M{es, v i (M cos(nip) + My, sin(n)] (21)

For n =1, we get

M{es, ) = Mo(es) + Mic(eg) cosyp + Mas(ey) sin g (22)
where
— 1 r2r—
Mioles) = ;/0 Mle;, ) cos dip (23)
_ 1 r .
Misler) == [ Mlesv) sint dy (24)
r Jo
Therefore, the required trim conditions are
- 1 pom
Micles) = ;/0 Mlej, ) cos pdip =0 (25)
Mules) = = [ Fles,) sin p b =0 (26)
1s\Cf) — T Jo K sin = Z

Thus, Eqs. (25) and (26) represent the trim equations, which are solved together with the

response periodicity conditions.

3.3.3 Steady Flap Moment Based on the Curvature Method

Concomitant to the force-integration method, the steady flapping moment at the radial

location e is also estimated by the curvature method. That is,

—_— ./M (Ef, t) 8211) —_
Mlen) = o qim = [Aa— ) (27)
In terms of mode shapes and generalized coordinates, Eq. (27) is expressed as
NOM
Mes, ¢ Z {Ag\Il"} Wi(y) (28)

Therefore, the steady flap moment is given by
— |

Moles) = 7 /0% Miey, ¢) dy (29)
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4 Correlations

We begin the correlation with the nonrotating and rotating frequencies of the blade
modes in flap bending, lag bending and torsion. We then correlate with the lag regressive-
mode damping, control settings of lateral and longitudinal cyclic pitch angles and finally root
flapping moment at the 12% radial station. The baseline parameters for these predictions
are identified in Table 4.

Table 3 shows a comparison between the data and predicted nonrotating frequencies for
flap bending, lag bending and torsion modes; the data are available for three fundamental
flap-lag-torsion modes as well as for the second and third modes in flap bending. The
correlation is very good in that the maximum error in the prediction with respect to the
data hardly exceeds 5.5%. Figure 10 shows the variation of the rotating frequencies with
rotor rotational speed Q1 for the first two flap-lag-torsion modes. For example, in forward
flicht Q = 1700 rpm and the corresponding predictions of the dimensionless (dimensional)
rotating frequencies for the fundamental flap-lag-torsion modes are 1.13 (32.02 Hz), 0.7
(19.83 Hz) and 2.86 (81.03 Hz), respectively. The rotating-frequency data are available
over a range of {) values for the first lag mode only, and here as well, the correlation is
very good. For completeness, Fig. 10 also includes the nonrotating-frequency data on the
fundamental flap-lag-torsion and second-flap bending modes.

Compared to the frequency data in Table 3 and Fig. 10, the data on damping level,
cyclic pitch controls and root flapping moment are far more extensive [9, 10]. Accordingly,
we present the correlation with these data in three phases: lag regressive-mode damping in
the first phase (Figs. 11—14), lateral and longitudinal cyclic pitch controls in the second
phase (Figs. 15—22), and finally root flapping moment in the third phase (Figs. 23—30).
Following Maier [10], we select four typical test cases with a two-degree precone, for which
the updated database is available: three-degree collective with three cases of shaft angle
a, = 0° 3° and 6°, and 5.9-degree collective with shaft angle o, = 6°. The analytical
predictions are from the quasisteady stall, dynamic stall, and dynamic stall and wake aero-
dynamic theories. As seen from the data in Fig. 11 (6o = 3% and «a, = 0°), the damping

increases slowly up to an advance ratio of 0.2, and thereafter it more or less decreases with
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Table 4;: Baseline Parameters for the Experimental Rotor

Lift curve slope, a (1/rad) 6.283
Lock number, v (based on a = 6.283) 7.5896
Profile drag coefficient, Cy, 0.01
Camber of NACA 0012 airfoil section, a, 0.0°
Lift coefficient at a = 0, Cj, 0.0
Pitching moment coefficient at o = 0, Cpg 0.0
Quasisteady stall angle of NACA 0012 airfoil section, oy,  £14°
Rotor solidity, o, 0.0962
Hinge offset, ey, (in) 4.7
Blade root cutout, r. (in) 13.76
Blade precone, 3,. (deg) 2
Number of aerodynamic elements, NEL 3
Number of modes, NOM 5

increasing . Thus, the data exhibit a convex trend of damping variation with x. Overall,
this trend of the data is well predicted by all three theories. Furthermore, the thrust level
Cr/o, is low throughout the data range (0 < g < 0.31); in fact, it is less than 0.03, and for
u > 0.2, it slowly decreases with increasing advance ratio. Given the low-thrust condition,
this is expected. The comparative aspects of the correlation by three theories are instructive
as well. For example, despite some overprediction for x < 0.05, the dynamic stall theory
provides good correlation throughout. Similarly, the quasisteady stall theory closely follows
and underpredicts the dynamic stall theory. This underprediction, though marginal, is con-
sistently observed throughout the data range. Compared to these two theories, the dynamic
stall and wake theory provides overall better correlation in that it picks up the finer varia-
tions of the experimental data. For example, for 0 < p < 0.05, it predicts a nearly constant
damping level and agrees with the data better, and for p > 0.15, it gradually follows the
dynamic stall theory. The minor differences between the quasisteady stall and dynamic stall
theories are due to unsteady lift effects; differences between dynamic stall and dynamic stall
and wake theories are due to dynamic wake effects.

In Fig. 12, 8, = 3° and «, = 3° Here as well, the data show a convex trend of
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the damping level. The thrust level, which is about 0.01 in hover, increases to 0.022 for
#~ 0.1 and thereafter decreases to 0.013 at u = 0.31. Since the thrust level is low, all three
aerodynamic theories provide good correlation. In particular, the dynamic stall and wake
theory reduces the overpredictions of the quasisteady stall and dynamic stall theories for
p < 0.1 and gradually follows the other two theories for u > 0.2.

Now, we come to Fig. 13 for 6 = 3° and a, = 6°. As seen from the data, the damping
level very slowly increases with increasing advance ratio for g < 0.1 and thereafter, it
sharply decreases. The thrust level is about 0.01 in hover and increases to a maximum value
of 0.017 at p = 0.15 and thereafter decreases with increasing y; in fact, it is nearly zero at
= 0.31. The predictions from the quasisteady stall and dynamic stall theories show slowly
increasing damping up to yx = 0.1 and thereafter decreasing damping. However, the rate of
decrease in damping is small. Moreover, these two theories somewhat overpredict damping
for 0 < p < 0.05. By comparison, the dynamic stall and wake theory improves the correlation
for 4 < 0.15, and for g > 0.15, it slowly merges with the other two theories. This merging
is expected since the thrust level, which is low to begin with, decreases with increasing p for
> 0.15 and more or less reduces to zero at g = 0.31. In summary, the correlation from the
dynamic stall and wake theory is adequate for g < 0.2 and needs quantitative corrections
for x> 0.2, which merits further investigation.

Figure 14 is for 6y = 5.9 and o, = 6°, and the data are available from a near-hovering
condition with gz = 0.04 to a fairly high-speed condition with y = 0.36. Despite some data
scattering around g = 0.05 and 0.35, the data show that the lag damping increases for
0.04 < g < 0.15 and decreases for p > 0.15. We also mention that the thrust level increases
from 0.034 in hover to 0.045 at g = 0.1 and decreases to 0.02 at y = 0.36. Overall, all three
theories predict the trend of the data. However, the dynamic stall theory and the quasisteady
stall theory (except at u =~ 0.15) overpredict damping consistently. The differences between
the quasisteady stall and dynamic stall theories are mainly due to unsteady lift effects, which
increase with increasing collective pitch; see Fig. 13. The dynamic stall and wake theory _
significantly reduces the overpredictions of the quasisteady stall and dynamic stall theories
and thereby improves the correlation. Overall, the dynamic stall and wake theory provides

good correlation.
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In Figs. 15—17, we present the correlation for lateral cyclic-pitch angle 6. for o, = 0°, 3°
and a, = 6°, respectively. In all three figures, the data show known trends: 6. is zero at
1 = 0.0, increases suddenly around g = 0.05 and thereafter slowly decreases with increasing
advance ratio. The rate of decrease is higher in Fig. 17 than in Figs. 15 and 16. The
predictions from the quasisteady stall and dynamic stall theories are nearly the same for
all three values of as. And these predictions show that the lateral cyclic pitch required to
minimize 1/rev flapping moment is negative and that its magnitude monotonically increases
with increasing advance ratio. Although these trends of the predictions are at best consistent
with those of the data for g > 0.05, overall they are quantitatively inaccurate. But inclusion
of wake effects dramatically improves the correlation, both quantitatively and qualitatively.
In particular, the dynamic stall and wake theory predicts the sudden increase around g =
0.05; that is, in the transition regime when the flow over the rotor disk is associated with a
large amount of shed and trailing vorticities. With increasing y, the dynamic stall and wake
theory predicts the decreasing trend of the data. However, this rate of decrease is relatively
higher and, hence, the correlation needs further quantitative correction for p > 0.2.

In Fig. 18, 8o = 5.9% and o, = 6°. Here as well, the data show a variation for 8, similar to
that in Figs. 15—17; that is, suddenly increasing at g = 0.05 and thereafter decreasing with
increasing advance ratio. As seen from Fig. 18, both the dynamic stall and quasisteady stall
theories fail to predict this variation and are not acceptable. By comparison, the dynamic
stall and wake theory not only predicts this variation but also provides good correlation
throughout. In summary, Figs. 15—18 show that it is important to include wake effects in
the prediction of lateral cyclic pitch angle . and that the correlation in Figs. 16 and 17
merits further improvement at high speed conditions, say, u > 0.25.

Now, we show the correlation for longitudinal cyclic pitch angle 8, for four cases: three-
degree collective with o, = 0°, 3° and 69 in Figs. 19—21, respectively, and 5.9%collective
with a, = 6° in Fig. 22. The data are available from hover to an advance ratio of 0.31
and show that negative 6, is required for the present trim condition of minimizing 1/rev
root flapping moment. As for the details, we begin with Fig. 19; the data show that 6,
is nearly zero up to g & 0.05 and that thereafter it increases (negative) with increasing s.

The predictions from the quasisteady stall and dynamic stall theories show that 6, essentially
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increases (negative) with increasing p, and the predictions from these two theories are nearly
identical. Compared to the data, however, this rate of increase is milder. Moreover, the
theories fail to capture the finer details in the variations of 8§, with x at low advance ratios,
say for u < 0.1. By comparison, the dynamic stall and wake theory predicts that 6, is nearly
constant for g < 0.075. Thereafter, however, it basically follows the other two theories and,
all in all, requires a bit of quantitative improvement for ¢ > 0.1. Similar trends are observed
for &, = 3% in Fig. 20. In summary, as seen from Figs. 19 and 20, the quasisteady stall
and dynamic stall theories provide satisfactory correlation and the dynamic stall and wake
theory follows the other two theories with noteworthy improvements for p < 0.05 and some
overpredictions for 0.05 < p < 0.1.

In Fig. 21 the data show a similar variation for 6, as in Figs. 19 and 20. Here as well, the
predictions from the quasisteady stall and dynamic stall theories agree, and they correlate
well with the data. The dynamic stall and wake theory brings the theory closer to the data
at 4 = 0.05 but it also takes the theory somewhat away from the data at u = 0.1. For
p > 0.1 it virtually merges with the other two theories. Overall, all three theories provide
good correlation.

The data in Fig. 22 show that 6, (negative) increases with increasing advance ratio.
The predictions from the quasisteady stall and dynamic stall theories are nearly identical
and provide adequate correlation. The dynamic stall and wake theory slightly improves
the correlation for x> 0.25, but compared to the other two stall theories, it also slightly
overpredicts for u < 0.25. Nevertheless, it also provides adequate correlation overall.

The next four figures show the correlation for the root flap moment from the curvature
method. The three-degree collective case with a; = 0%, 3° and 6° is covered in Figs. 23—25,
respectively, and the 5.9-degree collective case with o, = 6% is covered in Fig. 26. The
data show that the flap moment increases with increasing g up to a certain value of y, say,
around 0.2 in Figs. 23 and 24 and around 0.15 in Figs. 25 and 26, and that it decreases
thereafter; that is, a convex-type variation. Surprisingly, the predictions from all three
theories are nearly identical. Although these three theories predict the trend of the data,
they underpredict (negative) flapping moment throughout the data range except in Fig. 25
(0, = 3° and a, = 6°) for x > 0.25 and in Fig. 26 at pu ~ 0.36.
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Figures 27—30 are based on the force integration method. Here as well, the predictions
from the three aerodynamic theories are nearly identical and they consistently underpredict
the flapping moment for all values of u. Nevertheless, they predict the trend of the data for
all four cases: a, = 0°, 3° and 6° with 8, = 3° and «, = 6° with 6 = 5.9°. Overall, the

required quantitative improvements in Figs. 23—30 merit further investigation.

5 Toward Improving the Correlations

We are pursuing a two-pronged approach toward improving the preceding correlation.
The first approach is based on improving the dynamic stall characteristics and the results are
presented in the next section. The second approach is based on adapting a transient-response
analysis [14] somewhat similar to the moving block analysis. It is still in a developmental

stage and the research is continuing.

5.1 NACAO0012 Dynamic Stall Characteristics

Thus far, the correlations in Figs. 11—30 are based on the dynamic stall parameters of
an NACA 23012 airfoil section used in Ref. [3]. It needs to be emphasized that the database
on dynamic stall parameters is extremely limited and that the state of the art does not
permit an accurate description of these parameters, no matter which airfoil. (Throughout,
the quasisteady stall parameters of an NACA 0012 airfoil section are used.) Given this
background, it is instructive to study the sensitivity of the preceding correlations to the
dynamic stall parameters. That study is presented in Figs. 31-50, in which the correlations
are based on the dynamic stall parameters of an NACA 0012 airfoil section used in Ref.
[8]. These correlations are also presented in three phases: Figs. 31—34 on lag-regressive
mode damping levels, Figs. 35—38 on lateral cyclic pitch control input, Figs. 39—42 on
longitudinal cyclic pitch control input, and Figs. 43—50 on root flap moment.

Figures 31—33 show the sensitivity of lag-regressive mode damping to dynamic stall
parameters for 6, = 3° with a, = 0°, 3° and 6°, respectively, and Fig. 34 for 6o = 5.9°
and a, = 6°. Overall, Figs. 31—34 show that the sensitivity of the damping predictions

to changes in the dynamic stall parameters is negligible. The remaining sets of correlations
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further demonstrate this negligible sensitivity, Figs. 35—42 with respect to the lateral cyclic
pitch control and longitudinal cyclic pitch control angles and Figs. 43—50 with respect to

the root flap moment.

6 Concluding Remarks

The preceding correlation covers a comprehensive database (0.0 < u < 0.36, 0° < 4, <
5.9°, 0° < a, < 6°) on lag damping, lateral and longitudinal cyclic pitch angles and root
flap moment. Overall, the dynamic stall and wake theory provides fairly good correlation.
A major finding is that inclusion of dynamic wake dramatically improves the correlation for
the lateral cyclic pitch angle .. We are continuing this correlation effort to cover additional
data received recently from the AFDD and to adapt a transient-response-analysis method
of Ref. [14], which provides a means of predicting damping levels and frequencies without

perturbations as required in Floquet analysis.
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Figure 10: Fan Diagram for Rotating Frequencies of the Experimental Rotor
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Appendix

Dynamic Stall Parameters

NACA 23012 Airfoil Section(Ref. 6)

A=02 (30a)
(5 _ ac’zl a
T a2 (30b)

w = 0.10 +0.023(|e®] — 13%)u(|a®] — 13°) if |o°] < 21.7°

= 0.3if [o°] > 21.7° (30c)
L 0.105 (30d)
w

e = 2-51tan"' {1.21(|a"] - 13°)} x u(|e®| - 13°)

where u is the unit step function (30€)
aqg = 0.32 (3la)
rg =0.2+0.1(AC,)* (31b)
E; = —0.015(AC,)? (31c)
am = 0.25 + 0.1 (AC,)? (32a)
rm = 0.2 +0.2(AC,)? (32b)
E. =0.01(AC,)? (32¢)

NACA 0012 Airfoil Section (Ref. 8)

A=0.15 (33a)
ac’z a

— ¢ 33b

d Jda 2 (33b)
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w1+ %) = [0.24 0.1 (AC)T (33¢)

2dw = 0.25 + 0.1 (AC,)? (33d)
e =—0.6(AC,)" (33e)
aq = 0.32 (34a)
ra = 0.2+ 0.1 (AC,)? (34b)
E; = —0.015 (AC,)? (34c)
am = 0.25 + 0.1 (AC,)? (35a)
rm = 0.2+ 0.1 (AC,)? (35b)
E. = —0.6(AC,)? (35¢)
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